Hematology Review

April Stouder, MHS, PA-C
NCAPA Winter Conference 2017
Learning Objectives

- Review the PANRE exam blueprint covering anemias, coagulation disorders and malignancies
- For each hematologic condition, outline the following:
 - Pertinent historical information
 - Risk factors
 - Signs and symptoms
 - Physical examination
 - Differential diagnosis
 - Treatment
Hematopoiesis

- Formation of blood cells
 - Under **normal** conditions, production and turnover are coordinated
 - Continuous production
 - Stress = increased production (illness, altitude, exercise, bleeding)
Erythropoiesis

- Requirements include
 - Erythropoietin stimulation of a healthy bone marrow
 - Adequate supply of iron
- Peritubular interstitial cells of the kidney produce Epo in response to lower oxygen delivery
Red blood cells contain several hundred thousand hemoglobin molecules, which transport oxygen.
Classification of Anemia

- Pathophysiologic
 - Production vs destruction problem
 - Make the **distinction by reticulocyte count** (2%)
 - Normal response to anemia = increased reticulocytes

- Morphologic
 - Size matters...look at the MCV
Morphologic Classification

- Microcytic
 - MCV < 80
- Normocytic
 - MCV 80-100
- Macrocytic
 - MCV > 100
Differential Diagnosis for Microcytic Anemia

“TICS”
- Thalassemia
- Iron Deficiency
- Chronic Inflammation (anemia of chronic disease)
- Sideroblastic

Used with permission from Alan Platt, PA-C, Emory PA Program
Differential Diagnosis for Macrocytic Anemia

- “BIG FAT RED CELLS”
 - B_{12} Deficiency
 - Inherited Disorders (rare)
 - GI surgery/illness
 - Folic acid Deficiency
 - Alcoholism
 - Thiamine-responsive anemias (rare)
 - Reticulocytes (false elevation of MCV)

- Endocrine disorders (hypothyroid)
- Dietary Deficiencies
- Chemotherapy drugs
- Erythroleukemia (immature blasts large size)
- Liver Disease
- Lesch-Nyhan syndrome (rare)
- Splenectomy

Used with permission from Alan Platt, PA-C, Emory PA Program
Differential Diagnosis for Normocytic Anemia

• “NORMAL SIZE”
 • Normal pregnancy (30% plasma increase)
 • Overhydration/expansion of plasma volume
 • Renal Disease
 • Marrow infiltration (leukemia, fibrosis, infection)
 • Acute blood loss
 • Liver disease
 • Systemic inflammation (anemia chronic disease)
 • Zero production (red cell aplasia, aplastic anemia)
 • Endocrine disorders (thyroid, adrenal)

Used with permission from Alan Platt, PA-C, Emory PA Program
Iron Deficiency Anemia

- Most common cause of anemia worldwide

- Classically microcytic, although Hgb drops before MCV (early anemia is normocytic)

- Iron deficiency is a SYMPTOM, not a disease
 - Need to unearth the underlying cause
Risk Factors

- Poor diet
 - Children, pregnant women, elderly
- Chronic aspirin or NSAID use
 - GI tract blood loss
- Menorrhagia, malignancy, dialysis, blood donation
 - Increased losses
- Gastric resection, celiac disease
 - Decreased absorption
- Pregnancy, infancy, lactation, adolescence
 - Increased requirements
***Iron deficiency anemia in an adult is due to blood loss, most likely GI, until proven otherwise!!!
Clinical Findings

- None in early disease
- Fatigue, dyspnea on exertion, tachycardia
- Poor weight gain in infants
- Cheilosis, nail changes
- Dysphagia (Plummer-Vinson syndrome)
- **Pica**—ice, starch, clay/dirt
Diagnosis/Lab Findings

- **CBC → Hgb & Hct decreased**
 - MCV low (normal in early stages)
 - Platelets can be elevated (reactive)

- **Peripheral blood smear**
 - No changes early on
 - Microcytic RBCs, anisocytosis, poikilocytosis
Diagnosis / Lab Findings

- Iron Studies:
 - SERUM IRON: LOW
 - TIBC: HIGH
 - SERUM FERRITIN: *LOW

FERRITIN LEVELS REFLECT IRON STORES

acute phase reactant
KEY CONCEPT: No clinical situation other than iron deficiency exhibits extremely LOW Ferritin levels
Treatment

- Evaluate & treat blood loss
- Oral iron supplementation
 - Ferrous sulfate 325mg po TID between meals
 - Encourage stool softeners!!
- Parenteral Iron
 - Fail to respond to oral, intolerant, ongoing blood loss, GI disease
- Check CBC in 3-4 weeks, as Hgb normalizes quickly. Up to 6 months to replenish iron stores
Thalassemia

- Hereditary disorders characterized by reduced or absent production of globin chains (α or β)
Hemoglobin Types

- Normal hemoglobin consists of a tetramer of $\alpha_2\beta_2$ (Hgb A)
 - Represents ~ 98% of circulating adult hemoglobin
- Hemoglobin A₂ ($\alpha_2\delta_2$)
 - 1-2% of adult Hgb
- Hemoglobin F ($\alpha_2\gamma_2$)
 - Major Hgb of fetal life
 - Drops off around age 1
 - Less than 1% of adult Hgb
Thalassemia

- Risk Factors
 - Family History
 - Ethnicity

- Suspected in a person with
 - Personal history of lifelong microcytic anemia
 - Doesn’t respond to iron – don’t confuse with Fe Def anemia!
 - **Microcytosis out of proportion to degree of anemia**
 - MCV often less than 70
Alpha Thalassemia

- Commonly seen in **Southeast Asian & Chinese populations**
- Results from α-gene deletion

<table>
<thead>
<tr>
<th>α-globin Genes Present</th>
<th>Disorder</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Silent carrier</td>
<td>No anemia, normal MCV</td>
</tr>
<tr>
<td>2</td>
<td>Alpha thal trait</td>
<td>Mild anemia, microcytic (MCV 70-80)</td>
</tr>
<tr>
<td>1</td>
<td>Hgb H disease</td>
<td>Very microcytic (MCV 60-70), chronic hemolysis, variable anemia</td>
</tr>
<tr>
<td>0</td>
<td>Hydrops fetalis</td>
<td>Incompatible with life</td>
</tr>
</tbody>
</table>
Beta Thalassemia

- Caused by β-gene mutations rather than deletions
 - Results in reduced or absent β-chains
 - Excess α-chains \rightarrow unstable, causes hemolysis
 - Hemolysis occurs in marrow & circulation

- Primarily affects persons of Mediterranean origin (Italian, Greek)
Beta Thalassemia

<table>
<thead>
<tr>
<th>Genetic Abnormality</th>
<th>Disorder</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous β^0</td>
<td>Thalassemia major (Cooley’s anemia)</td>
<td>Severe chronic hemolysis & anemia, transfusion dependent. Bony abnormalities on PE. Iron overload.</td>
</tr>
<tr>
<td>Homozygous β^+</td>
<td>Thalassemia intermedia</td>
<td>Moderate chronic hemolysis & anemia. Occasional transfusions. Iron overload.</td>
</tr>
<tr>
<td>Heterozygous β^0 or β^+</td>
<td>Thalassemia minor</td>
<td>Mild anemia, no PE abnormalities. Rare transfusions.</td>
</tr>
</tbody>
</table>
Clinical Findings

- Thalassemia major- (Cooley’s anemia)
 - Diagnosed in infancy (decreased Hgb F)
 - Anemia is severe (HCT as low as 10%)
 - Transfusion dependent → iron overload
 - Bone marrow expansion → bony deformities
- Growth retardation
- Jaundice, HSM
- Limited life expectancy without effective treatment
Thalassemia Treatment

- Transfuse as needed
 - Caution - risk of iron overload
 - Iron chelation

- Folic acid supplement

- Genetic counseling

- Stem cell transplant – Cooley’s; children – offers chance for cure with HLA matched donor!
Anemia of Chronic Disease

- Organ failure or impaired marrow function
 - Common causes
 - Liver disease, acute or chronic infection (HIV), chronic inflammation (RA, lupus), hypothyroidism, renal disease (diabetic/hypertensive), malignancy

- Reduced erythropoietin stimulation of bone marrow
Clinical Findings

- Usually mild to moderate anemia
 - If more severe anemia, consider
 - Renal disease
 - Co-existing nutritional deficiency

- Signs & Sx usually related to underlying disease process
Diagnosis / Lab Findings

- Diagnosis of exclusion!
- Microcytic (up to 30%) or normocytic morphology
- Normal appearing peripheral smear
- Reticulocytes low
- Inappropriately low erythropoietin level
- Serum iron *and* TIBC may be low, but ferritin is normal or elevated
 - Don’t confuse with iron deficiency!
Contrasting Fe Def and Anemia of Chronic Disease

<table>
<thead>
<tr>
<th>IRON STUDIES</th>
<th>Iron def</th>
<th>Chronic dz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERUM IRON</td>
<td>VERY LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>TIBC</td>
<td>*HIGH</td>
<td>*LOW</td>
</tr>
<tr>
<td>SERUM FERRITIN</td>
<td>*LOW</td>
<td>*HIGH</td>
</tr>
<tr>
<td>MCV</td>
<td>mod LOW</td>
<td>mild LOW</td>
</tr>
</tbody>
</table>
Treatment

- Treat underlying disease
 - Anemia often remits
- Unless patient is symptomatic or transfusion dependent, no treatment generally indicated
- Treat any co-existing deficiencies (iron, folate, etc)
- Erythropoietin injections (Procrit, Aranesp) are helpful for certain patients
- Transfusions only if needed
Aplastic Anemia

- **Bone marrow failure**, arising from injury or suppression of hematopoietic stem cell
 - Causes pancytopenia

- Incidence in Western countries is 1-5 cases/million persons/year
 - In US, ~1000 cases diagnosed a year

- Can occur at any age
 - Most common in young adults (20-25) or >60
 - Male = female
Causes

• Acquired
 • Drugs: phenytoin, sulfonamides
 • Chemotherapy, radiation (dose related)
 • Chemicals: benzene, solvents, insecticides
 • Viruses: hepatitis, HIV, EBV
 • Lupus

• Hereditary (rare)
 • Fanconi’s anemia

• Idiopathic—50-65% of cases (likely autoimmune)
Clinical Findings

- Onset abrupt or insidious
- Significant pancytopenia
 - Fatigue / Weakness
 - Dyspnea
 - Excess bleeding/bruising
 - Petechiae, purpura
 - Pallor
 - Infections
- Notably absent are hepatosplenomegaly or lymphadenopathy
Diagnosis / Lab Findings

- **Hallmark = pancytopenia**
- Anemia may be severe
- Decreased reticulocytes
- Morphology and MCV usually normal
- Bone marrow is **hypocellular**, but no abnormal cells
Treatment

- Based on severity of disease
 - If mild, monitor & supportive care
 - Transfusions, treat infections

- Severe disease
 - ANC <500, plts<20K, anemia w/retic <1%

- Bone marrow transplant
 - Only 25-30% of patients will have a matched sibling

- Immunosuppression
 - If not a transplant candidate or without a match
B12 Deficiency

- Vit B₁₂ (cobalamin) is not synthesized by the body, must come from diet
 - Foods of animal origin only
 - Meat, dairy, eggs

- Upon digestion, binds with Intrinsic Factor (IF), secreted by gastric cells
 - B₁₂-IF complex absorbed in terminal ileum & stored in liver
Causes

- Inadequate intake (rare in US)—vegans

- Malabsorption
 - Inadequate production of IF (70%)
 - Pernicious anemia → most common cause
 - Gastrectomy

- Disorder of terminal ileum
 - Celiac, enteritis, resection, neoplasm, Crohn’s
Clinical Findings

- Glossitis
- Pallor
- Anorexia
- Diarrhea
- **Peripheral neuropathy**
 - Stocking-glove paresthesia
 - Loss of position & vibratory sense
 - Ataxia and dementia
 - Permanent if not treated – 6 months
Diagnosis / Lab Findings

- **Classically macrocytic**
 - MCV 110-140
- Anemia may be severe, with coexisting thrombocytopenia and leukopenia
- Peripheral smear: *hypersegmented neutrophils*
- Decreased retic count
- *Serum B12 levels low (normal >240pg/mL)*
 - <170 pg/mL → anemia
 - <100 pg/mL → symptoms
- **Schillings test** rarely used
Treatment

• Mainstay of treatment is replacement therapy
 • Oral or parenteral (IM)
 • Lifelong for pernicious anemia, resection of ileum, gastrectomy, strict vegans

• Response is brisk
 • Normal CBC in 2 months
Folate Deficiency

- Fruits and vegetables = primary dietary source

- Common causes
 - Poor diet
 - Alcoholics, elderly
 - Increased requirements
 - Hemolysis, pregnancy, dialysis, infancy
 - Malabsorption → rare
Clinical Findings

- Malnourished appearing
- Diarrhea
- Cheilosis
- Glossitis

Neurological symptoms do NOT occur
Diagnosis / Lab Findings

- Lab findings very similar to B12 deficiency
 - Macrocytosis
 - Howell-Jolly bodies
 - Normal B12 levels

- RBC Folate level <150 ng/mL is diagnostic
 - RBC folate is better than serum folate
 - not subject to fluctuations based on intake
Treatment

- Oral replacement therapy with Folic acid
 - 1 mg daily
 - Parenteral folate is rarely necessary
- Brisk response
 - 1-2 months
- Duration of therapy depends on cause of deficiency
 - ie, hemolytic anemia will need indefinitely
Hemolytic Anemias

- Group of disorders in which RBCs are destroyed, either episodically or continuously
 - If bone marrow is not able to keep up with rate of destruction \rightarrow anemia
 - Bone marrow has the ability to increase RBC production significantly to respond to losses
 - Reflected by *reticulocytosis*
Classification

- RBC destruction
 - intrinsic defect of the cell
 - some external factor

- Intrinsic abnormalities: problems with membrane, enzyme defects, hemoglobin
 - Usually hereditary

- Extrinsic factors: autoimmune, drugs, infection or trauma
 - Often acquired
Differential Diagnosis of Hemolytic Anemia

- “HEMATOLOGIST”
 - Hemoglobinopathies
 - Enzyme deficiency
 - Medications (sulfa, hi-dose PCN)
 - Antibodies
 - Trauma to RBCs
 - Ovalocytosis—inherited d/o in SE Asians
 - Liver disease, severe
 - Osmotic fragility—spherocytosis, elliptocytosis (hereditary)
 - G-6PD deficiency
 - Infection (parasite, bacterial)
 - Splenic destruction
 - Transfusion—acute or delayed

Used with permission from Alan Platt, PA-C Emory PA Program
Glucose-6-Phosphate Dehydrogenase Deficiency

- Hereditary enzyme defect causing episodic hemolysis
 - X-linked recessive disorder seen in about 11% of AA men in US & some Mediterranean populations
 - Absence of G6PD enzyme makes RBC sensitive to oxidation
 - Oxidized Hgb forms precipitate called Heinz body
 - Damages RBC membrane
 - Leads to removal by spleen (bite cells)
Clinical Findings

- Usually healthy
- Female carriers rarely affected
- No splenomegaly
- *Episodic hemolysis* often triggered by oxidative stress
 - Acute infections
 - Acidosis
 - Drugs (sulfa, antimalarials, ASA)
 - Fava beans
- Episodes usually self-limited